翻訳と辞書
Words near each other
・ Beau Rivage (Beirut)
・ Beau Rivage (Mississippi)
・ Beau Robinson
・ Beau Ryan
・ Beau Sabreur
・ Beau Sabreur (novel)
・ Beau Sancy
・ Beau Schmitz
・ Beau Scott
・ Beau Sia
・ Beau Smith
・ Beau Soir
・ Beau Soleil (The Killing)
・ Beau Sorenson
・ Beau Starr
Beatty sequence
・ Beatty Street Drill Hall
・ Beatty Township, St. Louis County, Minnesota
・ Beatty v. Guggenheim Exploration Co.
・ Beatty's Mills Factory Building
・ Beatty, Nevada
・ Beatty, Oregon
・ Beatty, Saskatchewan
・ Beatty-Corbett House
・ Beatty-Johl BJ-2 Assegai
・ Beattys Corner, Indiana
・ Beattystown, New Jersey
・ Beattyville, Kentucky
・ BeaTunes
・ Beatus


Dictionary Lists
翻訳と辞書 辞書検索 [ 開発暫定版 ]
スポンサード リンク

Beatty sequence : ウィキペディア英語版
Beatty sequence
In mathematics, a Beatty sequence (or homogeneous Beatty sequence) is the sequence of integers found by taking the floor of the positive multiples
of a positive irrational number. Beatty sequences are named after Samuel Beatty, who wrote about them in 1926.
Rayleigh's theorem, named after Lord Rayleigh, states that the complement of a Beatty sequence, consisting of the positive integers that are not in the sequence, is itself a Beatty sequence generated by a different irrational number.
Beatty sequences can also be used to generate Sturmian words.
==Definition==
A positive irrational number r\, generates the Beatty sequence
:\mathcal_r = \lfloor r \rfloor, \lfloor 2r \rfloor, \lfloor 3r \rfloor,\ldots = ( \lfloor nr \rfloor)_
If r > 1 \,, then s = r/(r-1)\, is also a positive irrational number. They naturally satisfy
:\frac1r + \frac1s = 1 \,
and the sequences
:\mathcal_r = ( \lfloor nr \rfloor)_ and
:\mathcal_s = ( \lfloor ns \rfloor)_
form a ''pair of complementary Beatty sequences''.
A more general non-homogeneous Beatty sequence takes the form
:\mathcal_r = \lfloor r+p \rfloor, \lfloor 2r+p \rfloor, \lfloor 3r+p \rfloor,\ldots = ( \lfloor nr+p \rfloor)_
where p\, is a real number. For p=1\,, the complementary non-homogeneous Beatty sequences can be found by making t = 1/r\, so that
:\mathcal_r = ( \lfloor n(r+1) \rfloor)_ and
:\mathcal_t = ( \lfloor n(t+1) \rfloor)_
form a pair of complementary Beatty sequences.

抄文引用元・出典: フリー百科事典『 ウィキペディア(Wikipedia)
ウィキペディアで「Beatty sequence」の詳細全文を読む



スポンサード リンク
翻訳と辞書 : 翻訳のためのインターネットリソース

Copyright(C) kotoba.ne.jp 1997-2016. All Rights Reserved.